Bridging the Gap: A Critical Analysis of Pre-Clinical Wound Healing Models for Improved Translation to Clinical Efficacy
DOI:
https://doi.org/10.61554/ijnrph.v2i1.2024.70Abstract
Wound healing is a complex process crucial for maintaining tissue integrity. While human trials offer the ultimate testing ground for wound treatments, ethical and practical limitations necessitate pre-clinical models. This review explores the strengths and limitations of various animal models used in wound healing research. The article highlights the contributions of rodents and pigs in elucidating fundamental wound management principles. However, it emphasizes the lack of a perfect model due to inter-species anatomical and physiological variations. Additionally, factors like age, sex, and wound location can influence results. The review then categorizes wound healing models into in vitro (cultured cells), ex vivo (tissues), and in vivo (whole animals) approaches. Each category encompasses various sub-models suitable for studying specific aspects of wound healing. Strengths of pre-clinical models include efficient data generation, controlled environments, and the ability to test therapies in disease states like diabetes. However, limitations include discrepancies in healing mechanisms between species and the difficulty of replicating complex chronic wounds. The review concludes by discussing how incorporating patientderived cells and advanced technologies like induced pluripotent stem cells (iPSCs) and microengineering hold promise for developing more accurate pre-clinical models. This can ultimately expedite drug development and improve wound management in humans.
Downloads
Metrics
Keywords:
Wound healing, animal models, <i>Ex vivo</i> models, In vivo models, In vitro modelsDownloads
Published
How to Cite
Issue
Section
References
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nature Reviews Molecular Cell Biology. 2024; 25:1-8. DOI: https://doi.org/10.1038/s41580-024-00715-1
Grada A, Mervis J, Falanga V. Research techniques made simple: animal models of wound healing. Journal of Investigative Dermatology. 2018;138(10):2095-105. DOI: https://doi.org/10.1016/j.jid.2018.08.005
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. British Journal of Dermatology. 2015;173(2):370-8. DOI: https://doi.org/10.1111/bjd.13954
Verdes M, Mace K, Margetts L, Cartmell S. Status and challenges of electrical stimulation use in chronic wound healing. Current Opinion in Biotechnology. 2022;75:102710. DOI: https://doi.org/10.1016/j.copbio.2022.102710
Demidova-Rice TN, Durham JT, Herman IM. Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing. Advances in wound care. 2012;1(1):17-22. DOI: https://doi.org/10.1089/wound.2011.0308
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5):700. DOI: https://doi.org/10.3390/biom11050700
Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in physiology. 2018;9:419. DOI: https://doi.org/10.3389/fphys.2018.00419
Whitney JD. Overview: acute and chronic wounds. Nursing Clinics. 2005;40(2):191-205. DOI: https://doi.org/10.1016/j.cnur.2004.09.002
Nayak SB, Raju SS, Orette FA, Chalapathi Rao AV. Effects of Hibiscus rosa sinensis L (Malvaceae) on wound healing activity: a preclinical study in a Sprague Dawley rat. The international journal of lower extremity wounds. 2007;6(2):76-81. DOI: https://doi.org/10.1177/1534734607302840
Zindle JK, Wolinsky E, Bogie KM. A review of animal models from 2015 to 2020 for preclinical chronic wounds relevant to human health. Journal of tissue viability. 2021;30(3):291-300. DOI: https://doi.org/10.1016/j.jtv.2021.05.006
Monaco JL, Lawrence WT. Acute wound healing: an overview. Clinics in plastic surgery. 2003;30(1):1-2. DOI: https://doi.org/10.1016/S0094-1298(02)00070-6
Dubay DA, Franz MG. Acute wound healing: the biology of acute wound failure. Surgical Clinics. 2003;83(3):463-81. DOI: https://doi.org/10.1016/S0039-6109(02)00196-2
Soliman AM, Barreda DR. Acute inflammation in tissue healing. International Journal of Molecular Sciences. 2022;24(1):641. DOI: https://doi.org/10.3390/ijms24010641
Enoch S, Leaper DJ. Basic science of wound healing. Surgery (Oxford). 2008;26(2):31-7. DOI: https://doi.org/10.1016/j.mpsur.2007.11.005
Honnegowda TM, Kumar P, Udupa EG, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plastic and Aesthetic Research. 2015;2:243-9. DOI: https://doi.org/10.4103/2347-9264.165438
Thamm OC, Koenen P, Bader N, Schneider A, Wutzler S, Neugebauer EA, Spanholtz TA. Acute and chronic wound fluids influence keratinocyte function differently. International Wound Journal. 2015;12(2):143-9. DOI: https://doi.org/10.1111/iwj.12069
Schultz GS, Ladwig G, Wysocki A. Extracellular matrix: review of its roles in acute and chronic wounds. World wide wounds. 2005;2005:1-8.
Galiano RD, Michaels VJ, Dobryansky M. Quantitative and reproducible murine model of excisional wound healing. Wound repair and regeneration. 2004; 12(4), 485-492. DOI: https://doi.org/10.1111/j.1067-1927.2004.12404.x
Nayak BS, Raju SS, Chalapathi Rao AV. Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats. Journal of wound care. 2008;17(3):123-5. DOI: https://doi.org/10.12968/jowc.2008.17.3.28670
Prabu D, Nappinnai M, Ponnudurai K, Prabhu K. Evaluation of wound-healing potential of Pisonia grandis R. Br: A preclinical study in Wistar rats. The International Journal of Lower Extremity Wounds. 2008;7(1):21-7. DOI: https://doi.org/10.1177/1534734607314051
Süntar I, Koca U, Keleş H, Akkol EK. Wound healing activity of Rubus sanctus Schreber (Rosaceae): preclinical study in animal models. Evidence-based Complementary and Alternative Medicine: eCAM. 2011. DOI: https://doi.org/10.1093/ecam/nep137
DG G. Models of wound healing. J Burn Care Rehabil. 2005;26:293-305. DOI: https://doi.org/10.1097/01.BCR.0000169885.66639.B5
Hurlow J, Bowler PG. Acute and chronic wound infections: microbiological, immunological, clinical and therapeutic distinctions. Journal of wound care. 2022;31(5):436-45. DOI: https://doi.org/10.12968/jowc.2022.31.5.436
Akkol EK, Koca U, Pesin I, Yilmazer D. Evaluation of the wound healing potential of Achillea biebersteinii Afan.(Asteraceae) by in vivo excision and incision models. Evidencebased Complementary and Alternative Medicine: Ecam. 2011. DOI: https://doi.org/10.1093/ecam/nep039
Masson‐Meyers DS, Andrade TA, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MA. Experimental models and methods for cutaneous wound healing assessment. International journal of experimental pathology. 2020;101(1-2):21-37. DOI: https://doi.org/10.1111/iep.12346
Dorsett‐Martin WA. Rat models of skin wound healing: a review. Wound repair and regeneration. 2004;12(6):591-9. DOI: https://doi.org/10.1111/j.1067-1927.2004.12601.x
Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC complementary and alternative medicine. 2012;12:1-7. DOI: https://doi.org/10.1186/1472-6882-12-103
Ud‐Din S, Bayat A. Non‐animal models of wound healing in cutaneous repair: in silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair and Regeneration. 2017;25(2):164-76. DOI: https://doi.org/10.1111/wrr.12513
Neves LM, Wilgus TA, Bayat A. In vitro, ex vivo, and in vivo approaches for investigation of skin scarring: Human and animal models. Advances in Wound Care. 2023;12(2):97-116. DOI: https://doi.org/10.1089/wound.2021.0139
Mendoza‐Garcia J, Sebastian A, Alonso‐ Rasgado T, Bayat A. Optimization of an ex vivo wound healing model in the adult human skin: Functional evaluation using photodynamic therapy. Wound Repair and Regeneration. 2015;23(5):685-702.
Stamm A, Reimers K, Strauß S, Vogt P, Scheper T, Pepelanova I. In vitro wound healing assays–state of the art. BioNanoMaterials. 2016 May 1;17(1-2):79-87. DOI: https://doi.org/10.1515/bnm-2016-0002
Xu W, Hong SJ, Jia S, Zhao Y, Galiano RD, Mustoe TA. Application of a partial-thickness human ex vivo skin culture model in cutaneous wound healing study. Laboratory investigation. 2012 Apr 1;92(4):584-99. DOI: https://doi.org/10.1038/labinvest.2011.184
Chao CY, Ng GY, Cheung KK, Zheng YP, Wang LK, Cheing GL. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. Journal of biomechanical engineering. 2013 Oct 1;135(10):101009. DOI: https://doi.org/10.1115/1.4025109
Andersson MÅ, Madsen LB, Schmidtchen A, Puthia M. Development of an experimental ex vivo wound model to evaluate antimicrobial efficacy of topical formulations. International journal of molecular sciences. 2021 May 10;22(9):5045. DOI: https://doi.org/10.3390/ijms22095045
Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assesment of wound healing potential: A systematic review. Wound medicine. 2018 Mar 1;20:43-53. DOI: https://doi.org/10.1016/j.wndm.2018.01.003
Suarez-Arnedo A, Figueroa FT, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PloS one. 2020 Jul 28;15(7):e0232565. DOI: https://doi.org/10.1371/journal.pone.0232565
Chen ZJ, Yang JP, Wu BM, Tawil B. A novel three-dimensional wound healing model. Journal of Developmental Biology. 2014;2(4):198-209. DOI: https://doi.org/10.3390/jdb2040198
Korsuwannawong S, Srichan R, Vajrabhaya LO. Effect of Aloe resin on cell migration between Scratch and Boyden chamber assays. Journal of Medicinal Plants Research. 2020 Aug 31;14(8):366-72. DOI: https://doi.org/10.5897/JMPR2020.6981
Monsuur HN, Boink MA, Weijers EM, Roffel S, Breetveld M, Gefen A, van den Broek LJ, Gibbs S. Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics. 2016;49(8):1381-7. DOI: https://doi.org/10.1016/j.jbiomech.2016.01.040
Rodriguez-Menocal L, Salgado M, Ford D, Van Badiavas E. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients. Stem cells translational medicine. 2012 Mar 1;1(3):221-9. DOI: https://doi.org/10.5966/sctm.2011-0029
Smith CJ, Parkinson EK, Yang J, Pratten J, O'Toole EA, Caley MP, Braun KM. Investigating wound healing characteristics of gingival and skin keratinocytes in organotypic cultures. Journal of Dentistry. 2022;125:104251. DOI: https://doi.org/10.1016/j.jdent.2022.104251
Cho S, Lee S, Ahn SI. Design and engineering of organ-on-a-chip. Biomedical engineering letters. 2023 May;13(2):97-109. DOI: https://doi.org/10.1007/s13534-022-00258-4
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organsonchips technologies–A guide from disease models to opportunities for drug development. Biosensors and Bioelectronics. 2023 ;231:115271. DOI: https://doi.org/10.1016/j.bios.2023.115271
Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, Yang J, Wang Y, Song Y. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharmaceutica Sinica B. 2023;13(6):2483-509. DOI: https://doi.org/10.1016/j.apsb.2023.02.006
Driver R, Mishra S. Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-onchip. BioChip Journal. 2023;17(1):1-23. DOI: https://doi.org/10.1007/s13206-022-00087-8
Sharma JR, Lebeko M, Kidzeru EB, Khumalo NP, Bayat A. In vitro and ex vivo models for functional testing of therapeutic anti-scarring drug targets in keloids. Advances in wound care. 2019;8(12):655-70. DOI: https://doi.org/10.1089/wound.2019.1040
Mendoza‐Garcia J, Sebastian A, Alonso‐ Rasgado T, Bayat A. Optimization of an ex vivo wound healing model in the adult human skin: Functional evaluation using photodynamic therapy. Wound Repair and Regeneration. 2015;23(5):685-702. DOI: https://doi.org/10.1111/wrr.12325
Schaudinn C, Dittmann C, Jurisch J, Laue M, Günday-Türeli N, Blume-Peytavi U, Vogt A, Rancan F. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. PLoS One. 2017 Nov 15;12(11):e0186946. DOI: https://doi.org/10.1371/journal.pone.0186946
Steinstraesser L, Sorkin M, Niederbichler AD, Becerikli M, Stupka J, Daigeler A, Kesting MR, Stricker I, Jacobsen F, Schulte M. A novel human skin chamber model to study wound infection ex vivo. Archives of dermatological research. 2010 Jul;302:357-65. DOI: https://doi.org/10.1007/s00403-009-1009-8
Mazzalupo S, Wawersik MJ, Coulombe PA. An ex vivo assay to assess the potential of skin keratinocytes for wound epithelialization. Journal of Investigative dermatology. 2002 May 1;118(5):866-70. DOI: https://doi.org/10.1046/j.1523-1747.2002.01736.x
Wilkinson HN, Kidd AS, Roberts ER, Hardman MJ. Human ex vivo wound model and whole-mount staining approach to accurately evaluate skin repair. JoVE (Journal of Visualized Experiments). 2021; 168: e62326. DOI: https://doi.org/10.3791/62326
Gross-Amat O, Guillen M, Salmon D, Nataf S, Auxenfans C. Characterization of a topically testable model of burn injury on human skin explants. International journal of molecular sciences. 2020 Sep 22;21(18):6956. DOI: https://doi.org/10.3390/ijms21186956
Bauer T, Gubi D, Klufa J, Novoszel P, Holcmann M, Sibilia M. Ex-vivo skin explant culture is a model for TSLP-mediated skin barrier immunity. Life. 2021;11(11):1237. DOI: https://doi.org/10.3390/life11111237
Gimble JM, Frazier T, Wu X, Uquillas AA, Llamas C, Brown T, Nguyen D, Tucker HA, Arm DM, Peterson DR, Bunnell BA. A novel, sterilized microvascular tissue product improves healing in a murine pressure ulcer model. Plastic and Reconstructive Surgery– Global Open. 2018;6(11):e2010. DOI: https://doi.org/10.1097/GOX.0000000000002010
De Angelis B, D’autilio MF, Orlandi F, Pepe G, Garcovich S, Scioli MG, Orlandi A, Cervelli V, Gentile P. Wound healing: in vitro and in vivo evaluation of a bio-functionalized scaffold based on hyaluronic acid and platelet-rich plasma in chronic ulcers. Journal of clinical medicine. 2019;8(9):1486. DOI: https://doi.org/10.3390/jcm8091486
Du Y, Wang J, Fan W, Huang R, Wang H, Liu G. Preclinical study of diabetic foot ulcers: From pathogenesis to vivo/vitro models and clinical therapeutic transformation. International Wound Journal. 20(10):4394-409. DOI: https://doi.org/10.1111/iwj.14311
Strong AL, Bowles AC, MacCrimmon CP, Lee SJ, Frazier TP, Katz AJ, Gawronska-Kozak B, Bunnell BA, Gimble JM. Characterization of a murine pressure ulcer model to assess efficacy of adipose-derived stromal cells. Plastic and Reconstructive Surgery–Global Open. 2015 Mar 1;3(3):e334. DOI: https://doi.org/10.1097/GOX.0000000000000260
Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR journal. 2015 May 19;56(1):127-38. DOI: https://doi.org/10.1093/ilar/ilv016
Middelkoop E, Van Den Bogaerdt AJ, Lamme EN. Porcine wound models for skin substitution and burn treatment. Biomaterials. 2004;25(9):1559-67. DOI: https://doi.org/10.1016/S0142-9612(03)00502-7
Ganesh K, Sinha M, Mathew-Steiner SS, Das A, Roy S, Sen CK. Chronic wound biofilm model. Advances in wound care. 2015;4(7):382-8. DOI: https://doi.org/10.1089/wound.2014.0587
Yang Q, Phillips PL, Sampson EM, Progulske‐ Fox A, Jin S, Antonelli P, Schultz GS. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair and Regeneration. 2013;21(5):704-14. DOI: https://doi.org/10.1111/wrr.12074
Wilhelm KP, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Skin Research and Technology. 2017 Feb;23(1):3-12. DOI: https://doi.org/10.1111/srt.12317
Hofmann AT, Neumann S, Ferguson J, Red H, Mittermayr R. A rodent excision model for ischemia-impaired wound healing. Tissue Engineering Part C: Methods. 2017;23(12):995-1002. DOI: https://doi.org/10.1089/ten.tec.2017.0212
Frank S, Kämpfer H. Excisional wound healing: an experimental approach. Wound healing: methods and protocols. 2003:3-15.
Ansell DM, Campbell L, Thomason HA, Brass A, Hardman MJ. A statistical analysis of murine incisional and excisional acute wound models. Wound Repair and Regeneration. 2014 Mar;22(2):281-7. DOI: https://doi.org/10.1111/wrr.12148
Rhea L, Dunnwald M. Murine excisional wound healing model and histological morphometric wound analysis. JoVE (Journal of Visualized Experiments). 2020;162:e61616. DOI: https://doi.org/10.3791/61616-v
Colwell AS, Krummel TM, Longaker MT, Lorenz HP. An in vivo mouse excisional wound model of scarless healing. Plastic and reconstructive surgery. 2006 Jun 1;117(7):2292-6. DOI: https://doi.org/10.1097/01.prs.0000219340.47232.eb
Rizzo AE, Beckett LA, Baier BS, Isseroff RR. The linear excisional wound: an improved model for human ex vivo wound epithelialization studies. Skin Research and Technology. 2012 Feb;18(1):125-32. DOI: https://doi.org/10.1111/j.1600-0846.2011.00528.x
Sanapalli BK, Yele V, Singh MK, Krishnamurthy PT, Karri VV. Preclinical models of diabetic wound healing: A critical review. Biomedicine & Pharmacotherapy. 2021 Oct 1;142:111946. DOI: https://doi.org/10.1016/j.biopha.2021.111946
Hirsch T, Spielmann M, Zuhaili B, Koehler T, Fossum M, Steinau HU, Yao F, Steinstraesser L, Onderdonk AB, Eriksson E. Enhanced susceptibility to infections in a diabetic wound healing model. BMC surgery. 2008 Dec;8:1-8. DOI: https://doi.org/10.1186/1471-2482-8-5
Tsuboi R, Shi CM, Rifkin DB, Ogawa H. A wound healing model using healing‐impaired diabetic mice. The Journal of dermatology. 1992 Nov;19(11):673-5. DOI: https://doi.org/10.1111/j.1346-8138.1992.tb03757.x
Boyko TV, Longaker MT, Yang GP. Laboratory models for the study of normal and pathologic wound healing. Plastic and reconstructive surgery. 2017;139(3):654-62. DOI: https://doi.org/10.1097/PRS.0000000000003077
Darby IA, Bisucci T, Hewitson TD, MacLellan DG. Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. The international journal of biochemistry & cell biology. 1997;29(1):191200. DOI: https://doi.org/10.1016/S1357-2725(96)00131-8
Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic wound-healing science. Medicina. 2021;57(10):1072. DOI: https://doi.org/10.3390/medicina57101072
Yan X, Chen B, Lin Y, Li Y, Xiao Z, Hou X, Tan Q, Dai J. Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes research and clinical practice. 2010;90(1):66-72. DOI: https://doi.org/10.1016/j.diabres.2010.07.001
Cho H, Balaji S, Hone NL, Moles CM, Sheikh AQ, Crombleholme TM, Keswani SG, Narmoneva DA. Diabetic wound healing in a MMP9‐/‐mouse model. Wound Repair and Regeneration. 2016;24(5):829-40. DOI: https://doi.org/10.1111/wrr.12453
Elliot S, Wikramanayake TC, Jozic I, TomicCanic M. A modeling conundrum: murine models for cutaneous wound healing. Journal of investigative dermatology. 2018;138(4):736-40. DOI: https://doi.org/10.1016/j.jid.2017.12.001
Zhao B, Zhang X, Zhang Y, Lu Y, Zhang W, Lu S, Fu Y, Zhou Y, Zhang J, Zhang J. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells and Development. 2021;30(18):922-33. DOI: https://doi.org/10.1089/scd.2021.0100
Seth AK, Geringer MR, Galiano RD, Leung KP, Mustoe TA, Hong SJ. Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit-ear model. Journal of the American College of Surgeons. 2012;215(3):388-99. DOI: https://doi.org/10.1016/j.jamcollsurg.2012.05.028
Kryger ZB, Sisco M, Roy NK, Lu L, Rosenberg D, Mustoe TA. Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring. Journal of the American College of Surgeons. 2007 Jul 1;205(1):78-88. DOI: https://doi.org/10.1016/j.jamcollsurg.2007.03.001
Breen A, Mc Redmond G, Dockery P, O'Brien T, Pandit A. Assessment of wound healing in the alloxan-induced diabetic rabbit ear model. Journal of Investigative Surgery. 2008; 21(5):261-9. DOI: https://doi.org/10.1080/08941930802216807
Chien S, Wilhelmi BJ. A simplified technique for producing an ischemic wound model. Journal of Visualized Experiments. 2012; 63: e3341. DOI: https://doi.org/10.3791/3341-v
Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K, Kamiya A. Effects of shear stress on woundhealing angiogenesis in the rabbit ear chamber. Journal of Surgical Research. 1997;72(1):2935. DOI: https://doi.org/10.1006/jsre.1997.5170
Gould LJ, Leong M, Sonstein J, Wilson S. Optimization and validation of an ischemic wound model. Wound repair and regeneration. 2005 Nov;13(6):576-82. DOI: https://doi.org/10.1111/j.1524-475X.2005.00080.x
Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, Green J, Marsh CB, Gould LJ, Sen CK. Characterization of a preclinical model of chronic ischemic wound. Physiological genomics. 2009 May;37(3):211-24. DOI: https://doi.org/10.1152/physiolgenomics.90362.2008
Blalock TD, Varela JC, Gowda S, Tang Y, Chen C, Mast BA, Schultz GS. Ischemic skin wound healing models in rats. Wounds. 2001 Jan 1;13(1):35-44.
Bayat M, Chien S. Comparison and evaluation of seven animal models of ischemic skin wound: a review article. Journal of Pharmaceutical Research International. 2019 Mar 13;25(6):1-37. DOI: https://doi.org/10.9734/jpri/2018/v25i630119
Trujillo AN, Kesl SL, Sherwood J, Wu M, Gould LJ. Demonstration of the rat ischemic skin wound model. JoVE (Journal of Visualized Experiments). 2015 Apr 1(98):e52637. DOI: https://doi.org/10.3791/52637-v
Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited. Wound Repair and Regeneration. 2015 Nov 12;23(6):874-7. DOI: https://doi.org/10.1111/wrr.12338
Lu L, Liu D, Ying J, Yao Z, Hou Q, Wang H, Qi F, Luan W, Jiang H. Denervation affected skin wound healing in a modified rat model. The International Journal of Lower Extremity Wounds. 2022 Mar 28:15347346221090758. DOI: https://doi.org/10.1177/15347346221090758
Barker AR, Rosson GD, Dellon AL. Wound healing in denervated tissue. Annals of plastic surgery. 2006 Sep 1;57(3):339-42. DOI: https://doi.org/10.1097/01.sap.0000221465.69826.b7
Engin C, Demirkan F, Ayhan S, Atabay K, Baran NK. Delayed effect of denervation on wound contraction in rat skin. Plastic and reconstructive surgery. 1996;98(6):1063-7. DOI: https://doi.org/10.1097/00006534-199611000-00021
Richards AM, Floyd DC, Terenghi G, McGrouther DA. Cellular changes in denervated tissue during wound healing in a rat model. British journal of dermatology. 1999 Jun 1;140(6):1093-9. DOI: https://doi.org/10.1046/j.1365-2133.1999.02908.x
Jurjus A, Hourani R, Daouk H, Youssef L, BouKhalil P, Haidar H, Atiyeh B, Saade N. Effect of denervation on burn wound healing. Annals of Burns and Fire Disasters. 2018;31(4):278.
De Ieso ML, Pei JV. An accurate and costeffective alternative method for measuring cell migration with the circular wound closure assay. Bioscience reports. 2018; 38(5): 698. DOI: https://doi.org/10.1042/BSR20180698
Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V. Research techniques made simple: analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology. 2017;137(2):e11-6. DOI: https://doi.org/10.1016/j.jid.2016.11.020
Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011 Mar 11;3(1):107-24. DOI: https://doi.org/10.3390/pharmaceutics3010107
Guy JB, Espenel S, Vallard A, BattistonMontagne P, Wozny AS, Ardail D, Alphonse G, Rancoule C, Rodriguez-Lafrasse C, Magne N. Evaluation of the cell invasion and migration process: A comparison of the video microscope-based scratch wound assay and the boyden chamber assay. JoVE (Journal of Visualized Experiments). 2017;129:e56337. DOI: https://doi.org/10.3791/56337-v
Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H. In vitro cell migration and invasion assays. Mutation Research/Reviews in Mutation Research. 2013 Jan 1;752(1):10-24. DOI: https://doi.org/10.1016/j.mrrev.2012.08.001
Su P, Miao Z, Hu L, Li R, Yin C, Li D, Chen Z, Zhao F, Qian A. Methods of studying mammalian cell migration and invasion in vitro. In2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) 2017;10:148-159.
Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in bioengineering and biotechnology. 2018 Oct 31;6:154. DOI: https://doi.org/10.3389/fbioe.2018.00154
Lebeko M, Khumalo NP, Bayat A. Multidimensional models for functional testing of keloid scars: In silico, in vitro, organoid, organotypic, ex vivo organ culture, and in vivo models. Wound Repair and Regeneration. 2019 Jul;27(4):298-308. DOI: https://doi.org/10.1111/wrr.12705
Bhardwaj N, Chouhan D, B Mandal B. Tissue engineered skin and wound healing: current strategies and future directions. Current pharmaceutical design. 2017;23(24):3455-82. DOI: https://doi.org/10.2174/1381612823666170526094606
Miguel SP, Ribeiro MP, Coutinho P. Experimental Wound-Care Models: In Vitro/In Vivo Models and Recent Advances Based on Skin-on-a-Chip Models. Wound Healing Research: Current Trends and Future Directions. 2021:459-86. DOI: https://doi.org/10.1007/978-981-16-2677-7_15
Tajeddin A, Mustafaoglu N. Design and fabrication of organ-on-chips: Promises and challenges. Micromachines. 2021;12(12):1443. DOI: https://doi.org/10.3390/mi12121443
Zoio P, Oliva A. Skin-on-a-chip technology: microengineering physiologically relevant in vitro skin models. Pharmaceutics. 2022 Mar 21;14(3):682. DOI: https://doi.org/10.3390/pharmaceutics14030682
Brackman G, Coenye T. In vitro and in vivo biofilm wound models and their application. Advances in Microbiology, Infectious Diseases and Public Health: Volume 1. 2016:15-32. DOI: https://doi.org/10.1007/5584_2015_5002
Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharmaceutics. 2022;15(1):42. DOI: https://doi.org/10.3390/pharmaceutics15010042
Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. BioMed research international. 2011;(1):969618. DOI: https://doi.org/10.1155/2011/969618
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Advanced drug delivery reviews. 2014;69:81-102. DOI: https://doi.org/10.1016/j.addr.2013.12.006
Pastar I, Liang L, Sawaya AP, Wikramanayake TC, Glinos GD, Drakulich S, Chen V, Stojadinovic O, Davis SC, Tomic-Canic M. Preclinical models for wound-healing studies. InSkin tissue models 2018 Jan 1 (pp. 223-253). DOI: https://doi.org/10.1016/B978-0-12-810545-0.00010-3
Kuffler PD. Techniques for wound healing with a focus on pressure ulcers elimination. The Open Circulation & Vascular Journal. 2010;3(1).
Klein P, Sojka M, Kucera J, Matonohova J, Pavlik V, Nemec J, Kubickova G, Slavkovsky R, Szuszkiewicz K, Danek P, Rozkot M. A porcine model of skin wound infected with a polybacterial biofilm. Biofouling. 2018 Feb 7;34(2):226-36. DOI: https://doi.org/10.1080/08927014.2018.1425684
Lodhi SR, Vadnere GP. Relevance and perspectives of experimental wound models in wound healing research. Asian J Pharm Clin Res, 2017;10(7): 57-62. DOI: https://doi.org/10.22159/ajpcr.2017.v10i7.18276
Bodas K, Shinde V. Healing of wounds: a detailed review on models, biomarkers, biochemical and other wound assessment parameters. Inflammation. 2021 Mar;9(3).
Fang RC, Mustoe TA. Animal models of wound healing: uility in transgenic mice. Journal of Biomaterials Science, Polymer Edition. 2008 Jan 1;19(8):989-1005. DOI: https://doi.org/10.1163/156856208784909327
Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. Wound Medicine. 2019 Mar 1;24(1):8-17. DOI: https://doi.org/10.1016/j.wndm.2018.12.001
Singh H, Ali SS, Khan NA, Mishra A, Mishra AK. Wound healing potential of Cleome viscosa Linn. seeds extract and isolation of active constituent. South African Journal of Botany. 2017 Sep 1;112:460-5. DOI: https://doi.org/10.1016/j.sajb.2017.06.026
Davidson JM, Yu F, Opalenik SR. Splinting strategies to overcome confounding wound contraction in experimental animal models. Advances in wound care. 2013;2(4):142-8. DOI: https://doi.org/10.1089/wound.2012.0424
Canguven O, Burnett A. Cavernous nerve injury using rodent animal models. The journal of sexual medicine. 2008;5(8):1776-85. DOI: https://doi.org/10.1111/j.1743-6109.2008.00955.x
Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. Journal of Visualized Experiments. 2013;28(75):e50265. DOI: https://doi.org/10.3791/50265
Alapure BV, Lu Y, Peng H, Hong S. Surgical denervation of specific cutaneous nerves impedes excisional wound healing of small animal ear pinnae. Molecular neurobiology. 2018;55:1236-43. DOI: https://doi.org/10.1007/s12035-017-0390-0
Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions. Journal of wound care. 2017;26(1):5-19. DOI: https://doi.org/10.12968/jowc.2017.26.1.5
Fang RC, Kryger ZB, Buck II DW, De La Garza M, Galiano RD, Mustoe TA. Limitations of the db/db mouse in translational wound healing research: Is the NONcNZO10 polygenic mouse model superior. Wound repair and regeneration. 2010;18(6):605-13. DOI: https://doi.org/10.1111/j.1524-475X.2010.00634.x