Exploring the Relationship between Cholesterol Synthesis and Vitamin D: Implications and Insight

Authors

  • Taqdir Singh Department of Pharmaceutics, ISF College Pharmacy, Moga-142001, Punjab
  • Divya . Department of Pharmaceutics, ISF College Pharmacy, Moga-142001, Punjab
  • Lokesh Sharma Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga-142001, Punjab
  • Preeti Patel Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga-142001, Punjab
  • Balak Das Kurmi Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga-142001, Punjab

DOI:

https://doi.org/10.61554/ijnrph.v2i1.2024.77

Abstract

Cholesterol synthesis and vitamin D metabolism are essential processes in the human body, each with distinct roles in maintaining health and homeostasis. While cholesterol synthesis primarily produces cholesterol, a vital component of cell membranes and a precursor for steroid hormones, vitamin D metabolism contributes to calcium and phosphorus homeostasis, skeletal health, and immune function. Recent research has revealed intricate connections between these pathways, highlighting their interplay and mutual regulation. This review explores the interrelationship between cholesterol synthesis and vitamin D metabolism, elucidating the mechanisms underlying their crosstalk and discussing the implications for health and disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Cholesterol synthesis, vitamin D metabolism, interplay, regulatory cross-talk, health implications, therapeutic opportunities.

Downloads

Published

2024-06-30

How to Cite

Singh, T., ., D., Sharma, L., Patel, P., & Kurmi, B. D. (2024). Exploring the Relationship between Cholesterol Synthesis and Vitamin D: Implications and Insight. International Journal of Newgen Research in Pharmacy & Healthcare, 2(1), 42–50. https://doi.org/10.61554/ijnrph.v2i1.2024.77

Issue

Section

Articles

References

Kumar R, Chhillar N, Sanjay Gupta D, Kaur G, Singhal S, Chauhan T, et al. Cholesterol homeostasis, mechanisms of molecular pathways, and cardiac health. In: Physiology. IntechOpen; 2023. DOI: https://doi.org/10.5772/intechopen.108332

Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol homeostasis, mechanisms of molecular pathways, and cardiac health: A current outlook. Curr Probl Cardiol. 2024;49(1 Pt B):102081. DOI: https://doi.org/10.1016/j.cpcardiol.2023.102081

Ghozali M, Giribabu N, Salleh N. Mechanisms linking vitamin D deficiency to impaired metabolism: An overview. International Journal of Endocrinology.

Elkhwanky MS. Regulation of vitamin D metabolism by metabolic state in mice and humans: discovery of molecular factors repressing vitamin D bioactivation and inducing deficiency in diabetes. 2020.

Abdelrahman BA, El-Khatib AS, Attia YM. Insights into the role of vitamin D in targeting the culprits of non-alcoholic fatty liver disease. Life Sci [Internet]. 2023;332(122124):122124. DOI: https://doi.org/10.1016/j.lfs.2023.122124

Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Vitamin D deficiency: An underestimated factor in sepsis? Int J Mol Sci [Internet]. 2023;24(3). DOI: https://doi.org/10.3390/ijms24032924

Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr [Internet]. 2020;74(11):1498– 513. DOI: https://doi.org/10.1038/s41430-020-0558-y

Nie M, Wang J, Zhang K. Engineering a novel acetyl-CoA pathway for efficient biosynthesis of acetyl-CoA-derived compounds. ACS Synth Biol [Internet]. 2024;13(1):358–69. DOI: https://doi.org/10.1021/acssynbio.3c00613

Acar S, Özkan B. Vitamin D metabolism. In: Vitamin D. IntechOpen; 2021. DOI: https://doi.org/10.5772/intechopen.97180

Akimbekov NS. Vitamin D and phosphate interactions in health and disease, in Phosphate Metabolism: From Physiology to Toxicity. Springer; 2022. DOI: https://doi.org/10.1007/978-3-030-91623-7_5

Knuschke P. Sun exposure and vitamin D. Curr Probl Dermatol [Internet]. 2021;55:296–315. DOI: https://doi.org/10.1159/000517640

Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, Silva DD da, et al. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci [Internet]. 2022;59(8):517–54. DOI: https://doi.org/10.1080/10408363.2022.2070595

Starska-Kowarska K. Role of vitamin D in head and neck cancer-immune function, antitumour effect, and its impact on patient prognosis. Nutrients [Internet]. 2023;15(11). DOI: https://doi.org/10.3390/nu15112592

Alotaibi AB, M ELnasieh A, Alduraibi K. The correlation between vitamin D levels and the glycemic marker HbA1c and lipid profile in patients with type 2 diabetes mellitus: A study at the King Saud Medical City, Riyadh. Cureus [Internet]. 2024;16(4):e57927. DOI: https://doi.org/10.7759/cureus.57927

Wei X, Pandohee J, Xu B. Recent developments and emerging trends in dietary vitamin D sources and biological conversion. Crit Rev Food Sci Nutr [Internet]. 2023;1–17. DOI: https://doi.org/10.1080/10408398.2023.2220793

Bikle D, Christakos S. New aspects of vitamin D metabolism and action-Addressing the skin as source and target. Nature Reviews Endocrinology. 2020;16(4):234–52. DOI: https://doi.org/10.1038/s41574-019-0312-5

Makris K, Sempos C, Cavalier E. The measurement of vitamin D metabolites: part I—metabolism of vitamin D and the measurement of 25-hydroxyvitamin D. Hormones (Athens). 2020;19(2):81–96. DOI: https://doi.org/10.1007/s42000-019-00169-7

Balog M, Anderson AC, Heffer M, Korade Z, Mirnics K. Effects of psychotropic medication on somatic sterol biosynthesis of adult mice. Biomolecules [Internet]. 2022;12(10):1535. DOI: https://doi.org/10.3390/biom12101535

Brown AJ, Coates HW, Sharpe LJ. Cholesterol synthesis. In: Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier; 2021. p. 317–55. DOI: https://doi.org/10.1016/B978-0-12-824048-9.00005-5

Schumacher MM, DeBose-Boyd RA. Posttranslational regulation of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol. Annu Rev Biochem [Internet]. 2021;90(1):659–79. DOI: https://doi.org/10.1146/annurev-biochem-081820-101010

Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, et al. Cholesterol and its derivatives: Multifaceted players in breast cancer progression. Front Oncol [Internet]. 2022;12:906670. DOI: https://doi.org/10.3389/fonc.2022.906670

Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, et al. Cholesterol biosynthesis: A mechanistic overview. Biochemistry [Internet]. 2016;55(39):5483–506. DOI: https://doi.org/10.1021/acs.biochem.6b00342

Frank A, Groll M. The methylerythritol phosphate pathway to isoprenoids. Chem Rev [Internet]. 2017;117(8):5675–703. DOI: https://doi.org/10.1021/acs.chemrev.6b00537

Berthelot K, Estevez Y, Deffieux A, Peruch F. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie [Internet]. 2012;94(8):1621–34. DOI: https://doi.org/10.1016/j.biochi.2012.03.021

Park J, Zielinski M, Magder A, Tsantrizos YS, Berghuis AM. Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Nat Commun [Internet]. 2017;8(1):14132. DOI: https://doi.org/10.1038/ncomms14132

Conart C, Bomzan DP, Huang X-Q, Bassard JE, Paramita SN, Saint-Marcoux D, et al. A cytosolic bifunctional geranyl/farnesyl diphosphate synthase provides MVA-derived GPP for geraniol biosynthesis in rose flowers. Proc Natl Acad Sci U S A [Internet]. 2023;120(19):e2221440120. DOI: https://doi.org/10.1073/pnas.2221440120

Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res [Internet]. 2020;79(101033):101033. DOI: https://doi.org/10.1016/j.plipres.2020.101033

Risley JM. Cholesterol biosynthesis: Lanosterol to cholesterol. J Chem Educ [Internet]. 2002;79(3):377. DOI: https://doi.org/10.1021/ed079p377

Aibana O, Huang C-C, Aboud S, Arnedo-Pena A, Becerra MC, Bellido-Blasco JB, et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individualparticipant data meta-analysis. PLoS Med [Internet]. 2019;16(9):e1002907. DOI: https://doi.org/10.1371/journal.pmed.1002907

Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol [Internet]. 2022;18(2):96–110. DOI: https://doi.org/10.1038/s41574-021-00593-z

Zhang J, Guo M, Huang Z-X, Bao R, Yu Q, Dai M, et al. Calcitriol enhances pyrazinamide treatment of murine tuberculosis. Chin Med J (Engl) [Internet]. 2019;132(17):2089–9 32. Papagni R, Pellegrino C, Di Gennaro F, Patti G, Ricciardi A, Novara R, et al. Impact of vitamin D in prophylaxis and treatment in tuberculosis patients. Int J Mol Sci [Internet]. 2022;23(7):3860. DOI: https://doi.org/10.1097/CM9.0000000000000394

Wolff AE, Jones AN, Hansen KE. Vitamin D and musculoskeletal health. Nat Clin Pract Rheumatol [Internet]. 2008;4(11):580–8. DOI: https://doi.org/10.1038/ncprheum0921

Lips P, Bouillon R, van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N, et al. Reducing fracture risk with calcium and vitamin D: Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf) [Internet]. 2010;73(3):277–85. DOI: https://doi.org/10.1111/j.1365-2265.2009.03701.x

Parashar AK. Synthesis and characterization of temozolomide loaded theranostic quantum dots for the treatment of brain glioma. J Med Pharm Allied Sci [Internet]. 2021;10(3):2778–82. DOI: https://doi.org/10.22270/jmpas.v10i3.1073

Sîrbe C, Rednic S, Grama A, Pop TL. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int J Mol Sci [Internet]. 2022;23(17):9784. DOI: https://doi.org/10.3390/ijms23179784

Pérez-López FR. Vitamin D and its implications for musculoskeletal health in women: An update. Maturitas. 2007;58(2):117–37. DOI: https://doi.org/10.1016/j.maturitas.2007.05.002

Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D, et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab [Internet].

;98(8):E1283-304.

Bouillon R, Carmeliet G. Vitamin D insufficiency: Definition, diagnosis and management. Best Pract Res Clin Endocrinol Metab [Internet]. 2018;32(5):669–84. DOI: https://doi.org/10.1016/j.beem.2018.09.014

Charoenngam N, Ayoub D, Holick MF. Nutritional rickets and vitamin D deficiency: consequences and strategies for treatment and prevention. Expert Rev Endocrinol Metab [Internet]. 2022;17(4):1–14. DOI: https://doi.org/10.1080/17446651.2022.2099374

Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc [Internet]. 2011;59(12):2291–300. DOI: https://doi.org/10.1111/j.1532-5415.2011.03733.x

Mishra L, Das Kurmi B. Cosmetics regulations and standardization guidelines. Pharmaspire. 2023; DOI: https://doi.org/10.56933/Pharmaspire.2023.15124

Dawson-Hughes B. Calcium and vitamin D for bone health in adults. In: Nutrition and Bone Health. New York, NY: Springer New York; 2015. p. 217–30. DOI: https://doi.org/10.1007/978-1-4939-2001-3_14

Bertoldo F, Cianferotti L, Di Monaco M, et al. Reply to wimalawansa, S.j. comment on “bertoldo et al. Definition, assessment, and management of vitamin D inadequacy: Suggestions, recommendations, and warnings from the Italian society for osteoporosis, mineral metabolism and bone diseases (SIOMMMS). Nutrients 2022, 14, 4148.” Nutrients [Internet]. 2023;15(3). DOI: https://doi.org/10.3390/nu15030499

Choudhary Y, Verma A, Alsayadi GM, Sandal P, Kurmi BD. Recent advancements in nanoparticles drug delivery systems Pharmaspire. 2022. DOI: https://doi.org/10.56933/Pharmaspire.2022.14211

Parashar AK, Patel P, Gupta AK, Jain NK, Kurmi BD. Synthesis, characterization and in vivo evaluation of PEGylated PPI dendrimer for safe and prolonged delivery of insulin. Drug Deliv Lett [Internet]. 2019;9(3):248–63. DOI: https://doi.org/10.2174/2210303109666190401231920

Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: A randomized clinical trial. JAMA. 2019;322(8):736. DOI: https://doi.org/10.1001/jama.2019.11889

Tanzy ME, Camacho PM. Effect of vitamin D therapy on bone turnover markers in postmenopausal women with osteoporosis and osteopenia. Endocr Pract. 2011;17(6):873–9. DOI: https://doi.org/10.4158/EP10339.OR

Tappia PS, Lopez R, Fitzpatrick-Wong S, Ramjiawan B. Understanding the role of vitamin D in heart failure. Rev Cardiovasc Med [Internet]. 2023;24(4):111. DOI: https://doi.org/10.31083/j.rcm2404111

Ku Y-C, Liu M-E, Ku C-S, Liu T-Y, Lin S-L. Relationship between vitamin D deficiency and cardiovascular disease. World J Cardiol [Internet]. 2013;5(9):337–46. DOI: https://doi.org/10.4330/wjc.v5.i9.337

Kunadian V, Ford GA, Bawamia B, Qiu W, Manson JE. Vitamin D deficiency and coronary artery disease: a review of the evidence. Am Heart J. 2014;167(3):283–91. DOI: https://doi.org/10.1016/j.ahj.2013.11.012

Ahmadieh H, Arabi A. Vitamins and bone health: beyond calcium and vitamin D: Nutrition Reviews. Nutr Rev [Internet]. 2011;69(10):584–98. DOI: https://doi.org/10.1111/j.1753-4887.2011.00372.x

Turner AG, Anderson PH, Morris HA. Vitamin D and bone health. Scand J Clin Lab Invest Suppl [Internet]. 2012;243:65–72.

Ao T, Kikuta J, Ishii M. The effects of vitamin D on immune system and inflammatory diseases. Biomolecules. 2021;11(11):1624. DOI: https://doi.org/10.3390/biom11111624

Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun. 2017;85:78–97. DOI: https://doi.org/10.1016/j.jaut.2017.07.007

Melguizo-Rodríguez L, Costela-Ruiz VJ, García-Recio E, De Luna-Bertos E, Ruiz C, Illescas-Montes R. Role of vitamin D in the metabolic syndrome. Nutrients. 2021;13(3):830. DOI: https://doi.org/10.3390/nu13030830

Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol [Internet]. 2018;175:177–89. DOI: https://doi.org/10.1016/j.jsbmb.2016.09.017