Methods for Making a Nanosuspension of Poorly Soluble Medications

Authors

  • Kumar V. Department of Pharmacy, IBMER, Mangalayatan University, Aligarh-202145
  • Singh D. Department of Pharmacy, IBMER, Mangalayatan University, Aligarh-202145

DOI:

https://doi.org/10.61554/ijnrph.v1i2.2023.36

Abstract

Class II prescriptions are known to dissolve ineffectively in both natural and fluid solvents, making them a significantly more challenging challenge. When it comes to these kinds of high log P synthetic compounds that are insoluble in water, the nanosuspension structure is desired. The overall bioavailability of nanosuspensions is influenced by an increase in surface area and a decrease in molecule size. Sometimes the oral dosage forms of water-soluble drugs that are slowly absorbed and inefficient show insufficient bioavailability. A drug's permeability and solubility have a significant impact on how bioavailable it is. To create sub-micron-sized particles, a suitable emulsifier and a pharmaceutical mixture are fed through a high-pressure homogenization or milling procedure. Both classic milling and precipitation processes are commonly used to create particles larger than one millimetre. In this investigation, the techniques was used to prepare the nanosuspension for improving the solubility of poorly soluble drugs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Nanosuspension, Techniques, Solubility, Poorly soluble drugs

Downloads

Published

2023-12-30

How to Cite

V., K., & D., S. (2023). Methods for Making a Nanosuspension of Poorly Soluble Medications. International Journal of Newgen Research in Pharmacy & Healthcare, 1(2), 42–52. https://doi.org/10.61554/ijnrph.v1i2.2023.36

Issue

Section

Articles

References

Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. International Journal of Pharmaceutics. 1998;160(2):229–37. DOI: https://doi.org/10.1016/S0378-5173(97)00311-6

Nagaraju., Krishnachaithanya., Srinivas., Padma. Nanosuspensions: A promising drug delivery systems. PCI- Approved-IJPSN [Internet]. 2010;2(4):679–84. Available from: http://dx.doi.org/10.37285/ijpsn.2009.2.4.1 DOI: https://doi.org/10.37285/ijpsn.2009.2.4.1

Patravale VB, Date AA, Kulkarni RM. Nanosuspension: A promising drug delivery strategy. Journal of Pharmacy and Pharmacology. 2004;56(7):827–40. DOI: https://doi.org/10.1211/0022357023691

Geetha G, Poojitha U, Khan A. Various techniques for preparation of nanosuspension - a review. International Journal of Pharma Research & Review. 2014;3(9):30–7.

Keck CM, Müller RH, Liversidge GG, Conzentino P, Müller RH, Peters K, et al. Formation of fine drug particles by co-grinding with cyclodextrin. I. the use of beta-cyclodextrin anhydrate and hydrate. International Journal of Pharmaceutics. 1995;62(1):171–4.

Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm [Internet]. 1995;125(2):309–13. Available from: http://dx.doi.org/10.1016/0378-5173(95)00148-c DOI: https://doi.org/10.1016/0378-5173(95)00148-C

Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov [Internet]. 2004;3(9):785–96. Available from: http://dx.doi.org/10.1038/nrd1494 DOI: https://doi.org/10.1038/nrd1494

Wongmekiat A, Tozuka Y, Oguchi T, Yamamoto K. Formation of fine drug particles by co-grinding with cyclodextrin. I. the use of beta-cyclodextrin anhydrate and hydrate. Pharmaceutical Research. 2002;19(12):1867–72. DOI: https://doi.org/10.1023/A:1021401826554

Itoh K, Pongpeerapat A, Tozuka Y, Oguchi T, Yamamoto K. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. Chem Pharm Bull (Tokyo) [Internet]. 2003;51(2):171–4. Available from: http://dx.doi.org/10.1248/cpb.51.171 DOI: https://doi.org/10.1248/cpb.51.171

Mura P, Cirri M, Faucci MT, Ginès-Dorado JM, Bettinetti GP. Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J Pharm Biomed Anal [Internet]. 2002;30(2):227–37. Available from: http://dx.doi.org/10.1016/s0731-7085(02)00252-2 DOI: https://doi.org/10.1016/S0731-7085(02)00252-2

Venkatesh T, Reddy AK, Maheswari JU, Dalith MD, Ck AK. Nanosuspensions: Ideal approach for the drug delivery of poorly water-soluble drugs. Der Pharmacia Lettre. 2011;3(2):203–13.

Kipp JE, Wong JCT, Doty MJ, Rebbeck CL. Microprecipitation method for preparing submicron suspensions. United States Patent, US 7037528B2; 2006.

Bodmeier R, Mcginity JM. Solvent selection in the preparation of poly (DL- lactide) microspheres prepared by a solvent evaporation method. International Journal of Pharmaceutics. 1998;43(1–2):179–86. DOI: https://doi.org/10.1016/0378-5173(88)90073-7

Corrias F, Lai F. New methods for lipid nanoparticles preparation. Recent Pat Drug Deliv Formul [Internet]. 2011;5(3):201–13. Available from: http://dx.doi.org/10.2174/187221111797200597 DOI: https://doi.org/10.2174/187221111797200597

Watnasirichaikul S, Rades T, Tucker IG, Davies NM. Effects of formulation variables on characteristics of poly (ethyl cyanoacrylates) nanocapsules prepared from w/o micro-emulsions. International Journal of Pharmaceutics. 2002;235(1–2):237–46. DOI: https://doi.org/10.1016/S0378-5173(02)00002-9

R Dabhi M, K Ghodasara U, D Mori D, A Patel K, Manek R, Sheth. Formulation, optimization and characterization of candesartan cilexetil nanosuspension for in vitro dissolution enhancement. Afr J Pharm Pharmacol [Internet]. 2015;9(5):102–13. Available from: http://dx.doi.org/10.5897/ajpp2013.3887 DOI: https://doi.org/10.5897/AJPP2013.3887

Detroja C, Chavhan S, Sawant K. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: formulation, characterization and pharmacodynamic study. Sci Pharm [Internet]. 2011;79(3):635–51. Available from: http://dx.doi.org/10.3797/scipharm.1103-17 DOI: https://doi.org/10.3797/scipharm.1103-17

Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioallied Sci [Internet]. 2011;3(3):426–34. Available from: http://dx.doi.org/10.4103/0975-7406.84459

Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, et al. Fabrication of Carvedilol Nanosuspensions through the antisolvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–304. DOI: https://doi.org/10.1208/s12249-011-9750-7

Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J [Internet]. 2014;22(3):246–57. Available from: http://dx.doi.org/10.1016/j.jsps.2013.03.006 DOI: https://doi.org/10.1016/j.jsps.2013.03.006

Patel B, Parikh RH, Swarnkar D. Enhancement of dissolution of Telmisartan through use of solid dispersion technique - surface solid dispersion. J Pharm Bioallied Sci [Internet]. 2012;4(Suppl 1):S64-8. Available from: http://dx.doi.org/10.4103/0975-7406.94142 DOI: https://doi.org/10.4103/0975-7406.94142

Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. Journal of Pharmacy and Bioallied Sciences. 2011;3(3):426–34. DOI: https://doi.org/10.4103/0975-7406.84459

Kumar S, Naved T, Alam S, Chauhan R. Design and Optimization of Telmisartan Nanosuspension for Improved Drug Delivery, Eur. Eur Chem Bull. 2023;12(6):947–56.

Bhargav E, Chaithanya Barghav G, Padmanabha Reddy Y, Pavan kumar C, Ramalingam P, Haranath C. A Design of Experiment (DoE) based approach for development and optimization of nanosuspensions of telmisartan, a BCS class II antihypertensive drug. Futur J Pharm Sci [Internet]. 2020;6(1). Available from: http://dx.doi.org/10.1186/s43094-020-00032-2 DOI: https://doi.org/10.1186/s43094-020-00032-2

Latha M, Latha MM, Sundar Devendiran S, Kumar MD. Design and Evaluation of Sustained Release Tablets containing Solid dispersion of Ziprasidone hydrochlorid”. International Journal of PharmTech Research. 2014;6(3):959–68.

Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc [Internet]. 1897;19(12):930–4. Available from: http://dx.doi.org/10.1021/ja02086a003 DOI: https://doi.org/10.1021/ja02086a003

Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res [Internet]. 1998;15(5):698–705. Available from: http://dx.doi.org/10.1023/a:1011910801212 DOI: https://doi.org/10.1023/A:1011910801212

Lakshmi P, Kumar GA. Nanosuspension technology: A review. International Journal of Pharmacy and Pharmaceutical Sciences. 2010;2(4):35–40.

Blunk T, Hochstrasser DF, Sanchez J-C, Müller BW, Müller RH. Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface‐modified latex particles evaluated by two‐dimensional polyacrylamide gel electrophoresis. Electrophoresis [Internet]. 1993;14(1):1382–7. DOI: https://doi.org/10.1002/elps.11501401214

Tao T, Zhao Y, Wu J, Zhou B. Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement. Int J Pharm [Internet]. 2009;367(1–2):109–14. Available from: http://dx.doi.org/10.1016/j.ijpharm.2008.09.034 DOI: https://doi.org/10.1016/j.ijpharm.2008.09.034

Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, et al. Formulation and anti- tumor activity evaluation of nanocrystalline suspensions of poorly soluble anti-cancer drugs. Pharmaceutical Research. 1996;13(2):272–8. DOI: https://doi.org/10.1023/A:1016051316815

Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94. DOI: https://doi.org/10.1023/A:1014276917363

Ponchel G, Montisci M, Dembri J, Durrer A, Duchene C. Mucoadhesion of colloidal particulate systems in the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics. 1997;44(1):25–31. DOI: https://doi.org/10.1016/S0939-6411(97)00098-2

Shim J, Kang HS, Park WS, Han S, Kim J, Chang I. Transdermal delivery of minoxidil with block copolymer nanoparticles. Journal of Controlled Release. 2004;97(3):477–84. DOI: https://doi.org/10.1016/j.jconrel.2004.03.028

Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm [Internet]. 2004;275(1–2):13–7. Available from: http://dx.doi.org/10.1016/j.ijpharm.2003.10.038 DOI: https://doi.org/10.1016/j.ijpharm.2003.10.038

Yamaguchi Y, Nagasawa T, Nakamura N, Takenaga M, Mizoguchi M, Kawai S, et al. Successful treatment of photo-damaged skin of nano-scale at RA particles using a novel transdermal delivery. Journal of ControlledRelease. 2005;104(1):29–40. DOI: https://doi.org/10.1016/j.jconrel.2004.11.036

Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci [Internet]. 2014;57:152–63. Available from: http://dx.doi.org/10.1016/j.ejps.2014.01.009 DOI: https://doi.org/10.1016/j.ejps.2014.01.009

Figueroa-Campos A, Sánchez-Dengra B, Merino V, Dahan A, González-Álvarez I, García-Arieta A, et al. Candesartan cilexetil in vitro-in vivo correlation: Predictive dissolution as a development tool. Pharmaceutics [Internet]. 2020;12(7):633. Available from: http://dx.doi.org/10.3390/pharmaceutics12070633 DOI: https://doi.org/10.3390/pharmaceutics12070633

Bhagwat G, Arkate RAH, Shaikh SIP, Vishwakarma SR. Improvement in solubility of BCS class II drug: Telmisartan. World Journal of Biology Pharmacy and Health Sciences. 2023;14(01):222–30. DOI: https://doi.org/10.30574/wjbphs.2023.14.1.0195

Park J, Cho W, Cha K-H, Ahn J, Han K, Hwang S-J. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm [Internet]. 2013;441(1–2):50–5. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.12.020 DOI: https://doi.org/10.1016/j.ijpharm.2012.12.020

Kundu S, Kumari N, Soni SR, Ranjan S, Kumar R, Sharon A, et al. Enhanced solubility of telmisartan phthalic acid cocrystals within the pH range of a systemic absorption site. ACS Omega [Internet]. 2018;3(11):15380–8. Available from: http://dx.doi.org/10.1021/acsomega.8b02144 DOI: https://doi.org/10.1021/acsomega.8b02144

Thombre AG, Shamblin SL, Malhotra BK, Connor AL, Wilding IR, Caldwell WB. Pharmacoscintigraphy studies to assess the feasibility of a controlled release formulation of ziprasidone. J Control Release [Internet]. 2015;213:10–7. Available from: http://dx.doi.org/10.1016/j.jconrel.2015.06.032 DOI: https://doi.org/10.1016/j.jconrel.2015.06.032

Pawar SR, Kale RN, Chitlange SS. Solubility Enhancement and Formulation Development of Ziprasidone Immediate Release Oral Drug Delivery. Pharmaceutical Resonance. 2018;1(1):26–9.

Zakowiecki D, Cal K, Kaminski K, Adrjanowicz K, Swinder L, Kaminska E, et al. The improvement of the dissolution rate of ziprasidone free base from solid oral formulations. AAPS PharmSciTech [Internet]. 2015;16(4):922–33. Available from: http://dx.doi.org/10.1208/s12249-015-0285-1 DOI: https://doi.org/10.1208/s12249-015-0285-1