Effectiveness of Jatropha curcas as Biodiesel and Antiviral: A Review


  • Agrawal A. Chameli Devi Institute of Pharmacy, Indore (M.P.)
  • Jain S. D. Chameli Devi Institute of Pharmacy, Indore (M.P.)
  • Gupta A. K. Chameli Devi Institute of Pharmacy, Indore (M.P.)




Jatropha curcas has emerged as a potential feedstock for biodiesel production due to its non-edible nature, high oil content, and adaptability to marginal lands. This review provides an overview of the advantages and challenges associated with Jatropha curcas as a biodiesel source. The non-edible nature of Jatropha curcas makes it an attractive option for biofuel production, as it does not compete with food crops, minimizing concerns about food security. The seeds of Jatropha curcas contain a significant amount of oil, ranging from 30% to 40%, making it a suitable feedstock for biodiesel production. Jatropha curcas exhibits adaptability to harsh environments and can grow on marginal lands unsuitable for food crops. It requires low water and nutrient inputs, making it a potential solution for areas where other crops struggle to thrive. Furthermore, the cultivation of Jatropha curcas can provide economic opportunities, especially in rural areas, contributing to rural development and income generation for farmers. However, there are challenges that need to be addressed for the successful commercialization of Jatropha curcas as a biodiesel feedstock.


Download data is not yet available.


Metrics Loading ...


<i>Jatropha curcas</i>, Biodiesel, Biofuel, Euphorbiaceae, Rural Development.




How to Cite

A., A., S. D., J., & A. K., G. (2023). Effectiveness of <i>Jatropha curcas</i> as Biodiesel and Antiviral: A Review. International Journal of Newgen Research in Pharmacy & Healthcare, 1(2), 32–41. https://doi.org/10.61554/ijnrph.v1i2.2023.46





Lam MK, Lee KT, Mohamed AR. Life cycle assessment for the production of biodiesel: A case study in Malaysia for palm oil versus jatropha oil. Biofuel Bioprod Biorefin [Internet]. 2009;3(6):601–12. Available from: http://dx.doi.org/10.1002/bbb.182 DOI: https://doi.org/10.1002/bbb.182

Alptekin E, Canakci M. Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel (Lond) [Internet]. 2009;88(1):75–80. Available from: http://dx.doi.org/10.1016/j.fuel.2008.05.023 DOI: https://doi.org/10.1016/j.fuel.2008.05.023

Alrashidi M, Derawi D, Salimon J, Firdaus Yusoff M. An investigation of physicochemical properties of Nigella sativa L. Seed oil from Al-Qassim by different extraction methods. J King Saud Univ Sci [Internet]. 2020;32(8):3337–42. Available from: http://dx.doi.org/10.1016/j.jksus.2020.09.019 DOI: https://doi.org/10.1016/j.jksus.2020.09.019

Ambat I, Srivastava V, Iftekhar S, Haapaniemi E, Sillanpää M. Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr–Al double oxides. Renew Energy [Internet]. 2020;146:2158–69. Available from: http://dx.doi.org/10.1016/j.renene.2019.08.061 DOI: https://doi.org/10.1016/j.renene.2019.08.061

Arbab MI, Masjuki HH, Varman M, Kalam MA, Imtenan S, Sajjad H. Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. Renew Sustain Energy Rev [Internet]. 2013;22:133–47. Available from: http://dx.doi.org/10.1016/j.rser.2013.01.046 DOI: https://doi.org/10.1016/j.rser.2013.01.046

Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, et al. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers Manag [Internet]. 2014;80:202–28. Available from: http://dx.doi.org/10.1016/j.enconman.2014.01.037 DOI: https://doi.org/10.1016/j.enconman.2014.01.037

Atabani AE, Mahlia TMI, Anjum Badruddin I, Masjuki HH, Chong WT, Lee KT. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renew Sustain Energy Rev [Internet]. 2013;21:749–55. Available from: http://dx.doi.org/10.1016/j.rser.2013.01.027 DOI: https://doi.org/10.1016/j.rser.2013.01.027

Zulqarnain, Ayoub M, Yusoff MHM, Nazir MH, Zahid I, Ameen M, et al. A comprehensive review on oil extraction and biodiesel production technologies. Sustainability [Internet]. 2021;13(2):788. Available from: http://dx.doi.org/10.3390/su13020788 DOI: https://doi.org/10.3390/su13020788

Azad AK, Rasul MG, Khan MMK, Sharma SC, Mofijur M, Bhuiya MMK. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renew Sustain Energy Rev [Internet]. 2016;61:302–18. Available from: http://dx.doi.org/10.1016/j.rser.2016.04.013 DOI: https://doi.org/10.1016/j.rser.2016.04.013

Banerji R, Chowdhury AR, Misra G, Sudarsanan G, Verma SC, Srivastava GS. Jatropha seed oils for energy. Biomass [Internet]. 1985;8(4):277–82. Available from: http://dx.doi.org/10.1016/0144-4565(85)90060-5 DOI: https://doi.org/10.1016/0144-4565(85)90060-5

Becker K, Makkar HP. Effects of phorbol esters in carp (Cyprinus carpio L). Vet Hum Toxicol. 1998;40(2):82–6.

Bhuiya MMK, Rasul M, Khan M, Ashwath N, Mofijur M. Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock. Ind Crops Prod [Internet]. 2020;144(112024):112024. Available from: http://dx.doi.org/10.1016/j.indcrop.2019.112024 DOI: https://doi.org/10.1016/j.indcrop.2019.112024

S B. Production of biolubricant from Jatropha curcas seed oil. J Chem Eng Mater Sci [Internet]. 2013;4(6):72–9. Available from: http://dx.doi.org/10.5897/jcems2013.0164 DOI: https://doi.org/10.5897/JCEMS2013.0164

Colucci Cante R, Garella I, Gallo M, Nigro R. Effect of moisture content on the extraction rate of coffee oil from spent coffee grounds using Norflurane as solvent. Chem Eng Res Des [Internet]. 2021;165:172–9. DOI: https://doi.org/10.1016/j.cherd.2020.11.002

Chapter 2 Jatropha curcas: A Review April 2009Advances in Botanical Research 50:39- 86. Botanical Research. 2009;50:39–86. DOI: https://doi.org/10.1016/S0065-2296(08)00802-1

Carreira-Casais A, Otero P, Garcia-Perez P, Garcia-Oliveira P, Pereira AG, Carpena M, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int J Environ Res Public Health [Internet]. 2021;18(17):9153. Available from: http://dx.doi.org/10.3390/ijerph18179153 DOI: https://doi.org/10.3390/ijerph18179153

Chapuis A, Blin J, Carré P, Lecomte D. Separation efficiency and energy consumption of oil expression using a screw-press: The case of Jatropha curcas L. seeds. Ind Crops Prod [Internet]. 2014;52:752–61. DOI: https://doi.org/10.1016/j.indcrop.2013.11.046

Chauhan BS, Kumar N, Cho HM. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy (Oxf) [Internet]. 2012;37(1):616–22. Available from: http://dx.doi.org/10.1016/j.energy.2011.10.043 DOI: https://doi.org/10.1016/j.energy.2011.10.043

Chauhan BS, Kumar N, Du Jun Y, Lee KB. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine. Energy (Oxf) [Internet]. 2010;35(6):2484–92. DOI: https://doi.org/10.1016/j.energy.2010.02.043

Bilgen S. Structure and environmental impact of global energy consumption. Renew Sustain Energy Rev [Internet]. 2014;38:890–902. Available from: http://dx.doi.org/10.1016/j.rser.2014.07.004 DOI: https://doi.org/10.1016/j.rser.2014.07.004

Pramanik K. Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy [Internet]. 2003;28(2):239–48. Available from: http://dx.doi.org/10.1016/s0960-1481(02)00027-7 DOI: https://doi.org/10.1016/S0960-1481(02)00027-7

Tiwari AK, Kumar A, Raheman H. Biodiesel Production from Jatropha Oil (Jatropha curcas) with High Free Fatty Acids: An Optimized Process. Biomass Bioenerg. 2007;31. DOI: https://doi.org/10.1016/j.biombioe.2007.03.003

Meher L, Vidyasagar D, Naik S. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev [Internet]. 2006;10(3):248–68. Available from: http://dx.doi.org/10.1016/j.rser.2004.09.002 DOI: https://doi.org/10.1016/j.rser.2004.09.002

Kibazohi O, Sangwan RS. Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy [Internet]. 2011;35(3):1352–6. DOI: https://doi.org/10.1016/j.biombioe.2010.12.048

Maftuchah A, Sudarmo H. Production of physic nut hybrid progenies and their parental in various dry land. Agric Sci J. 2013;4(1).

Maftuchah Z, Agus H, Bambang S, Hadi M, Maizirwan KL. Combining ability in Jatropha curcas L. genotypes. PPAS: B Life Environ Sci. 2017;54.

Mat R, Samsudin RA, Mohamed M, Johari A. Chemical composition, bio-diesel potential and uses of Jatropha curcas L. (Euphorbiaceae). Gudeta TB. 2012;7:142–9.

Achten W, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R. Jatropha biodiesel production and use. Biomass Bioenergy. 2008; DOI: https://doi.org/10.1016/j.biombioe.2008.03.003

Erice A, Brambilla D, Demeter L, Penas J, Brewster F. The AIDS Clinical Trials Group Virology Committee Resistance Working Group. Simplified Susceptibility Assay for Human Immunodeficiency Virus Type 1 Clinical Isolates. DAIDS Virology Manual for HIV Laboratories. 1997.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods [Internet]. 1983;65(1–2):55–63. http://dx.doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Wegner SA, Brodine SK, Mascola JR, Tasker SA, Shaffer RA, Starkey MJ, et al. Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naïve HIV-1 infected US military personnel. AIDS [Internet]. 2000;14(8):1009–15. Available from: http://dx.doi.org/10.1097/00002030-200005260-00013 DOI: https://doi.org/10.1097/00002030-200005260-00013

Rege AA, Ambaye R, Deshmukh RA. In-vitro testing of anti-HIV activity of some medicinal plants. Indian J Nat Prod Resour. 2010;1:193–9.

Mulye K, Tawde S, Shringare P, Deshmukh RA. Medicinal herbs: Potential Anti-HIV agents? Journal of Ayurveda. 2007;1:57–9.

Dahake R, Roy S, Patil D, Chowdhary A, Deshmukh RA. Evaluation of anti-viral activity of Jatropha curcas leaf extracts against potentially drug-resistant HIV isolates. BMC Infect Dis [Internet]. 2012;12(S1). Available from: http://dx.doi.org/10.1186/1471-2334-12-s1-p14 DOI: https://doi.org/10.1186/1471-2334-12-S1-P14

Matsuse IT, Lim YA, Hattori M, Correa M, Gupta MP. A search for anti-viral properties in Panamanian medicinal plants. The effects on HIV and its essential enzymes. J Ethnopharmacol. 1999;64(1):15–22. DOI: https://doi.org/10.1016/S0378-8741(98)00099-3

Makkar H, Becker K. Jatropha curcas , a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol. 2009;111:773–87. DOI: https://doi.org/10.1002/ejlt.200800244

Wender PA, Kee J-M, Warrington JM. Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV. Science [Internet]. 2008;320(5876):649–52. Available from: http://dx.doi.org/10.1126/science.1154690 DOI: https://doi.org/10.1126/science.1154690

Kamal S, Manmohan S, Birendra S. A Review on Chemical and Medicobiological Applications of Jatropha curcas. International Research Journal of Pharmacy. 2011;2:61–6.

Patil D, Roy S, Dahake R, Rajopadhye S, Kothari S, Deshmukh R, et al. Evaluation of Jatropha curcas Linn. leaf extracts for its cytotoxicity and potential to inhibit hemagglutinin protein of influenza virus. Indian J Virol [Internet]. 2013;24(2):220–6. Available from: http://dx.doi.org/10.1007/s13337-013-0154-z DOI: https://doi.org/10.1007/s13337-013-0154-z

Kusumoto IT, Kakiuchi N, Hattori M, Namba T, Sutardjo S, Shimotohno K. Screening of some Indonesian medicinal plants for inhibitory effects on HIV-1 protease. Shoyakugaku Zasshi. 1992;46:190–3.

Lim YA, Mei MC, Kusumoto IT, Miyashiro H, Hattori M, Gupta MP, et al. HIV-1 reverse transcriptase inhibitory principles from Chamaesyce hyssopifolia. Phytother Res [Internet]. 1997;11(1):22–7. Available from: http://dx.doi.org/10.1002/(sici)1099-1573(199702)11:1<22::aid-ptr951>3.0.co;2-3 DOI: https://doi.org/10.1002/(SICI)1099-1573(199702)11:1<22::AID-PTR951>3.0.CO;2-3

Lim YA, Kojima S, Nakamura N, Miyashiro H, Fushimi H, Komatsu K, et al. Inhibitory effects of Cordia spinescens extracts and their constituents on reverse transcriptase from human immunodeficiency virus. Phytother Res. 1997;11:490–5. DOI: https://doi.org/10.1002/(SICI)1099-1573(199711)11:7<490::AID-PTR134>3.0.CO;2-Y