Exploration of Solubilization Strategies: Enhancing Bioavailability for Low Solubility Drugs

Authors

  • Sahu G. K. Lloyd Institute of Management And Technology, Plot No. 11, Knowledge Park 2 Greater Noida, Uttar Pradesh, 201306
  • Gupta C. Lloyd Institute of Management And Technology, Plot No. 11, Knowledge Park 2 Greater Noida, Uttar Pradesh, 201306

DOI:

https://doi.org/10.61554/ijnrph.v1i2.2023.50

Abstract

This review explores various strategies aimed at improving the solubilization of low-solubility drugs, including formulation design, nanoparticle technologies, prodrug strategies, and particle size reduction methods. Water solubility plays a crucial role in shaping bioavailability, formulation strategies, and therapeutic efficacy. Nanotechnology, particularly in nanomedicines, is a promising avenue to tackle solubility challenges, but faces barriers like production costs, formulation reproducibility, and varying pharmacokinetics. Despite these challenges, the burgeoning landscape of innovative drug delivery technologies offers advantages, particularly for formulation scientists. Understanding molecular properties is crucial for resolving these challenges, with solid dispersions and lipid-based delivery techniques emerging as sought-after solutions. Commercializing these advancements requires a leap in technology and infrastructure, making it essential to streamline the process and identify optimal approaches. Pioneering methodologies, such as Fagerholm's predictive model for human oral bioavailability based on chemical structure, demonstrate promising predictive accuracy. The integration of artificial intelligence and innovative solubility enhancement technologies is pivotal in transforming drug delivery, tackling solubility concerns, and streamlining research and development expenses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Drug Solubility, Bioavailability Enhancement, Molecular Properties, Solid Dispersions, Lipid-based Drug Delivery, Nanotechnology.

Downloads

Published

2023-12-30

How to Cite

G. K., S., & C., G. (2023). Exploration of Solubilization Strategies: Enhancing Bioavailability for Low Solubility Drugs. International Journal of Newgen Research in Pharmacy & Healthcare, 1(2), 96–115. https://doi.org/10.61554/ijnrph.v1i2.2023.50

Issue

Section

Articles

References

Pavan BR, Mayura K, Jafar S, Abolghasem J. Solubility of Etoricoxib in Aqueous Solutions of Glycerin, Methanol, Polyethylene Glycols 200, 400, 600, and Propylene Glycol at 298.2 K. J.Chem.Eng.Data.2018; 63(2): 321-330. DOI: https://doi.org/10.1021/acs.jced.7b00709

Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm. 2015 Jun; 41(6): 875-87. DOI: https://doi.org/10.3109/03639045.2014.971027

Saal C, Petereit AC. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks. Eur J Pharm Sci. 2012 Oct 9; 47(3): 589-95. DOI: https://doi.org/10.1016/j.ejps.2012.07.019

Lu JX, Tupper C, Murray J. Biochemistry, Dissolution and Solubility. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2022 Sep 12;

Gabor F, Fillafer C, Neutsch L, Ratzinger G, Wirth M. Improving oral delivery. Handb Exp Pharmacol. 2010; (197): 345-398. DOI: https://doi.org/10.1007/978-3-642-00477-3_12

Dixit VB, Nutan B, Kumar A, Singh Chandel AK. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines. 2022; 10(9): 2055. DOI: https://doi.org/10.3390/biomedicines10092055

JOSHI J, NAINWAL N, SAHARAN VA. A REVIEW ON HYDROTROPY: A POTENTIAL APPROACH FOR THE SOLUBILITY ENHANCEMENT OF POORLY SOLUBLE DRUG. Asian J. Pharm. Clin Res 2019 Oct; 12(10): 19-26. DOI: https://doi.org/10.22159/ajpcr.2019.v12i10.34811

Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014 Jun 16; 57: 152-63. DOI: https://doi.org/10.1016/j.ejps.2014.01.009

Mostafa N, Authelin JR, Gianola G. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Eur J Pharm Sci. 2014; 9(6): 304-316. DOI: https://doi.org/10.1016/j.ajps.2014.05.005

Kalepu, S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B. 2015; 5(5): 442-453. DOI: https://doi.org/10.1016/j.apsb.2015.07.003

Saxena V, Kesharwani P, Gupta S, Mohammad NA, Sharma V, Khan AD, et al. Hydrotropy: Recent Advancements in Enhancement of Drug Solubility and Formulation Development. Int. J. Drug Deliv. Technol. 2021; 11(3): 1092-1102.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. int. sch. res. Notices. 2012; 2012: 195727. DOI: https://doi.org/10.5402/2012/195727

Patel VR, Agrawal YK. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011; 2(2): 81-87. DOI: https://doi.org/10.4103/2231-4040.82950

Prasanna P, Kumar GA. Nanosuspension technology: A review. Int J Pharm Pharm Sci. 2010; 2(4): 35-40.

Chauhan AS. Dendrimers for Drug Delivery. Molecules. 2018; 23(4): 938. DOI: https://doi.org/10.3390/molecules23040938

Bansal KK, Kakde D, Gupta U, Jain NK. Development and characterization of triazine based dendrimers for delivery of antitumor agent. J Nanosci Nanotechnol. 2010; 10(12): 8395-8404 DOI: https://doi.org/10.1166/jnn.2010.3003

Clulow AJ, Barber B, Salim M, Ryan T, Boyd BJ. Synergistic and antagonistic effects of non-ionic surfactants with bile salt + phospholipid mixed micelles on the solubility of poorly water-soluble drugs. Int J Pharm. 2020 Oct 15; 588: 119762. DOI: https://doi.org/10.1016/j.ijpharm.2020.119762

Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics. 2018 Oct 18; 10(4): 191. DOI: https://doi.org/10.3390/pharmaceutics10040191

Yin X, Luo L, Li W, Yang J, Zhu C, Jiang M, et al. A cabazitaxel liposome for increased solubility, enhanced antitumor effect and reduced systemic toxicity. Asian J Pharm Sci. 2019 Nov; 14(6): 658-667. DOI: https://doi.org/10.1016/j.ajps.2018.10.004

Wang Y, Zhang Z, Zheng C, Zhao X, Zheng Y, Liu Q, et al. Multistage Adaptive Nanoparticle Overcomes Biological Barriers for Effective Chemotherapy. Small. 2021 Aug; 17(31): e2100578. DOI: https://doi.org/10.1002/smll.202100578

Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007 Jul 30; 59(7): 617-30. DOI: https://doi.org/10.1016/j.addr.2007.05.011

Vandana KR, Prasanna RY, Chowdary HV, Sushma M, Vijay KN. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery. Saudi Pharm J. 2014 Sep; 22(4): 283-289. DOI: https://doi.org/10.1016/j.jsps.2013.05.004

Sherje AP, Jadhav M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J Mater Sci Mater Med. 2018; 29 (12): 186. DOI: https://doi.org/10.1007/s10856-018-6194-6

Semcheddine F, Guissi NI, Liu X, Wu Z, Wang B. Effects of the Preparation Method on the Formation of True Nimodipine SBE-β- CD/HP-β-CD Inclusion Complexes and Their Dissolution Rates Enhancement. AAPS PharmSciTech. 2015; 16(3): 704-715. DOI: https://doi.org/10.1208/s12249-014-0257-x

Argade PS, Magar DD, Saudagar RB, Solid dispersion: solubility enhancement technique for poorly water soluble drugs. J. Adv. Pharm. Edu. & Res. 20123; 3(4): 427-439.

Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: a review. Pak J Pharm Sci. 2009 Apr; 22(2): 234-246

Cid AG, Simonazzi A, Palma SD, Bermúdez JM. Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Ther Deliv. 2019 Jun 1; 10(6): 363-382. DOI: https://doi.org/10.4155/tde-2019-0007

Devhare, Lalchand, Kore PK. A recent review on bioavailability and solubility enhancement of poorly soluble drugs by physical and chemical modifications. Res. Chron. Health Sci. 2016; 2(5): 299-308.

Muniandy A., Huei LW, Pichika MR. Investigation of hyperbranched Poly (glycerol esteramide) as potential drug carrier in solid dispersion for solubility enhancement of lovastatin. Drug Deliv. Sci. Technol. 2021; 61:102237. DOI: https://doi.org/10.1016/j.jddst.2020.102237

30.Jatwani, S, Singh G, agarwaal G. Solubility and dissolution enhancement of simvastatin using synergistic effect of hydrophilic carriers. Der Pharm Lett. 2011 jan; 3(6): 280-93.

Gao N, Guo M, Fu Q, He Z. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm Sci. 2017; 12(1):66-72. DOI: https://doi.org/10.1016/j.ajps.2016.06.006

Ying Chen. Preparation and characterization of emulsified solid dispersions containing docetaxel. Arch Pharm Res. 2011; 34:1909- 1917. DOI: https://doi.org/10.1007/s12272-011-1111-2

Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int J Pharm. 2017; 529(1-2):294-302. DOI: https://doi.org/10.1016/j.ijpharm.2017.07.010

Chamsai B, Limmatvapirat S, Sungthongjeen S, Sriamornsak P. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α- tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm. 2017;43(12):2064-2075 DOI: https://doi.org/10.1080/03639045.2017.1371731

Aller MR, Davy G, Veuthey GL, Robert G. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol. 2015; 30:342-351. DOI: https://doi.org/10.1016/j.jddst.2015.05.009

Jornada DH, dos SFGF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules. 2015 Dec 29; 21(1):42. DOI: https://doi.org/10.3390/molecules21010042

Beaulieu PL, De Marte J, Garneau M, Luo L, Stammers T, Telang C, et al. A prodrug strategy for the oral delivery of a poorly soluble HCV NS5B thumb pocket 1 polymerase inhibitor using self-emulsifying drug delivery systems (SEDDS). Bioorg Med Chem Lett. 2015 Jan 15; 25(2):210-5. DOI: https://doi.org/10.1016/j.bmcl.2014.11.071

Qurratul AS, Shama P. An overview on various approaches used for solubilization of poorly soluble drugs. Pharma Res. 2009; 2:84-104.

Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018 Jan 25; 10(1):18. DOI: https://doi.org/10.3390/pharmaceutics10010018

Kumari S, Santanu K, Mukherjee S, Isaac J, Ghosh A. Solubility enhancement of ezetimibe by a cocrystal engineering technique. Cryst Growth Des. 2014; 14(9) :4475-4486. DOI: https://doi.org/10.1021/cg500560w

Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater. 2017 Aug; 6(16):10.1002/adhm.201700433. DOI: https://doi.org/10.1002/adhm.201700433

Deshpande PB, Kumar GA, Kumar AR, Shavi GV, Karthik A, Reddy MS, Udupa N. Supercritical fluid technology: concepts and pharmaceutical applications. PDA J Pharm Sci Technol. 2011 May-Jun; 65(3):333-44. DOI: https://doi.org/10.5731/pdajpst.2011.00717

Kumar M, Sharma Y, Chahar K, Kumari L, Mishra L, Patel P, Singh D, Kurmi BD. Validation of a Novel Supercritical Fluid Extractor/Dryer Combo Instrument. Assay Drug Dev Technol. 2023 Apr; 21(3):126-136. DOI: https://doi.org/10.1089/adt.2023.005

Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev. 2008 Feb 14; 60(3):399-410. DOI: https://doi.org/10.1016/j.addr.2007.08.030

Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol. 2013 Feb; 18(1):22-38. DOI: https://doi.org/10.3109/10837450.2012.726998

Misra SK, Pathak K. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro- and naonosized particle generation. ADMET DMPK. 2020 Jun 29; 8(4):355-374. DOI: https://doi.org/10.5599/admet.811

Pablo GS. Aguiar. Micronization of transresveratrol by supercritical fluid: Dissolution, solubility and in vitro antioxidant activity. Ind Crops Prod. 2018; 112: 1-5. DOI: https://doi.org/10.1016/j.indcrop.2017.11.008

Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008; 9(2):431-6. DOI: https://doi.org/10.1208/s12249-008-9057-5

Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm. 2018 Apr; 44(4):677-686. DOI: https://doi.org/10.1080/03639045.2017.1408642

Chen J. Preparation of Doxorubicin Liposomes by Remote Loading Method. Methods Mol Biol. 2023; 2622:95-101. DOI: https://doi.org/10.1007/978-1-0716-2954-3_8

Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VM. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011; 2011:939851. DOI: https://doi.org/10.1155/2011/939851

Torchilin VP, Weissig V, eds. Liposomes: A Practical Approach. Oxford University Press; 2003 DOI: https://doi.org/10.1093/oso/9780199636556.001.0001

Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J Tissue Eng. 2020 Mar 4; 11:2041731419897460. DOI: https://doi.org/10.1177/2041731419897460

Lee MK. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics. 2020 Mar 13; 12(3):264. DOI: https://doi.org/10.3390/pharmaceutics12030264

Chaudhary S, Garg T, Murthy RS, Rath G, Goyal AK. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014 Dec; 22(10):871-82. DOI: https://doi.org/10.3109/1061186X.2014.950664

Monica RP Rao, Laxmi S. B. Liposomal Drug Delivery for Solubility and Bioavailability Enhancement of Efavirenz. Indian J Pharm Sci. 2018; 80(6): DOI: https://doi.org/10.4172/pharmaceutical-sciences.1000463

Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017 Oct 15; 108:36-49. DOI: https://doi.org/10.1016/j.ejps.2016.12.009

Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front Pharmacol. 2017 May 16; 8:261. DOI: https://doi.org/10.3389/fphar.2017.00261

Emanuele D A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev. 2005; 57(15):2147-2162. DOI: https://doi.org/10.1016/j.addr.2005.09.012

Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev. 2013; 65(10): 1316-1330. DOI: https://doi.org/10.1016/j.addr.2013.01.001

Yellepeddi VK, Ghandehari H. Poly (amido amine) dendrimers in oral delivery. Tissue Barriers. 2016; 4(2): e1173773. DOI: https://doi.org/10.1080/21688370.2016.1173773

Patel J, Garala K, Basu B, Raval M, Dharamsi A. Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig. 2011; 1(3): 135-138. DOI: https://doi.org/10.4103/2230-973X.85962

Hanafy NAN, El-Kemary M, Leporatti S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers (Basel). 2018 Jul 20; 10(7): 238. DOI: https://doi.org/10.3390/cancers10070238

Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013; 2013: 340315. DOI: https://doi.org/10.1155/2013/340315

Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014 Apr 25; 5: 77. DOI: https://doi.org/10.3389/fphar.2014.00077

Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006 Jan; 3(1): 139-62. DOI: https://doi.org/10.1517/17425247.3.1.139

Bansal KK, Ali AA, Rahma M, Sjöholm E, Wilén CE, Rosenholm JM. Evaluation of solubilizing potential of functionalpoly (jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers. Int. J. Polym. Mater.Polym. Biomater. 2022; 72(16): 1–9. DOI: https://doi.org/10.1080/00914037.2022.2090942

Ali A, Bhadane R, Asl AA, Wilén CE, Salo- Ahen O, Rosenholm JM, et al. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv. 2022 Sep 21; 12(41): 26763-26775. DOI: https://doi.org/10.1039/D2RA03962A

Zhou Z, Forbes RT, Emanuele AD. Preparation of core-crosslinked lineardendritic copolymer micelles with enhanced stability and their application for drug solubilisation. Int J Pharm. 2017 May 15; 523(1): 260-269. DOI: https://doi.org/10.1016/j.ijpharm.2017.03.032

Naseri N, Valizadeh H, Zakeri-Milani P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv Pharm Bull. 2015 Sep; 5(3): 305-13 DOI: https://doi.org/10.15171/apb.2015.043

Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011; 12(1): 62-76. DOI: https://doi.org/10.1208/s12249-010-9563-0

Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004; 56(12): 1527-1535. DOI: https://doi.org/10.1211/0022357044959

Khan S, Shaharyar M, Fazil M, Hassan MQ, Baboota S, Ali J. Tacrolimus-loaded nanostructured lipid carriers for oral deliveryin vivo bioavailability enhancement. Eur J Pharm Biopharm. 2016; 109: 149-157. DOI: https://doi.org/10.1016/j.ejpb.2016.10.011

Abuzar SM, Hyun SM, Kim JH, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm. 2018; 538(1-2):1-13. DOI: https://doi.org/10.1016/j.ijpharm.2017.12.041

Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013; 453(1):126-141. DOI: https://doi.org/10.1016/j.ijpharm.2013.01.019

Francob P, De Marco I. Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes 2020; 8: 938. DOI: https://doi.org/10.3390/pr8080938

Park J, Cho W, Cha KH, Ahn J, Han K, Hwang SJ. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm. 2013; 441(1-2): 50-55. DOI: https://doi.org/10.1016/j.ijpharm.2012.12.020

Park HJ, Kim MS, Lee S, Kim JS, Woo JS, Hwang SJ et al. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process. Int J Pharm. 2007 Jan 10; 328(2): 152-60. DOI: https://doi.org/10.1016/j.ijpharm.2006.08.005

Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloid Interface Sci Commun. 2021; 45: 100533. DOI: https://doi.org/10.1016/j.colcom.2021.100533

Pandey P, Gulati N, Makhija M, Purohit D, Dureja H. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent Pat Nanotechnol. 2020 Dec 24; 14(4): 276-293 DOI: https://doi.org/10.2174/1872210514666200604145755

Kanke PK, Pathan IB, Jadhav A, Usman MRM. Formulation and evaluation of febuxostat nanoemulsion for transdermal drug delivery. J Pharm BioSci. 2019; 7(1): 1-7.

Wik J, Bansal KK, Assmuth T, Rosling A, Rosenholm JM. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv Transl Res. 2020;10(5):1228-1240. DOI: https://doi.org/10.1007/s13346-019-00703-5

Pyrhönen J, Bansal K, Bhadane R, Wilen CE, Salo-Ahen O, Rosenholm J. Molecular Dynamics Prediction Verified by Experimental Evaluation of the Solubility of Different Drugs in Poly (decalactone) for the Fabrication of Polymeric Nanoemulsions. Adv NanoBiomed Res. 2022; 2(1): 2100072. DOI: https://doi.org/10.1002/anbr.202100072

Kendre PN, Satav TS. Current trends and concepts in the design and development of nanogel carrier systems. Polymer Bulletin. 2019; 76: 1595-1617. DOI: https://doi.org/10.1007/s00289-018-2430-y

Zhang Y, Andrén OCJ, Nordström R, et al. Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics. Adv Funct Mater. 2019; 29(18):1806693. DOI: https://doi.org/10.1002/adfm.201806693

Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T. Nanogel--an advanced drug delivery tool: Current and future. Artif Cells Nanomed Biotechnol. 2016; 44(1): 165-77. DOI: https://doi.org/10.3109/21691401.2014.930745

Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels. 2021 Nov 23; 7(4): 228. DOI: https://doi.org/10.3390/gels7040228

Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J. 2016 Mar; 24(2):133-9. DOI: https://doi.org/10.1016/j.jsps.2014.04.001

Yao Y, Xia M, Wang H, Li G, Shen H, Ji G, et al. Preparation and evaluation of chitosanbased nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci. 2016 Aug 25; 91:144-53. DOI: https://doi.org/10.1016/j.ejps.2016.06.014

Khan KU, Akhtar N, Minhas MU. Poloxamer- 407-Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) Cross-linked Nanogels for Solubility Enhancement of Olanzapine: Synthesis, Characterization, and Toxicity Evaluation. AAPS PharmSciTech. 2020 May 17; 21(5):141. DOI: https://doi.org/10.1208/s12249-020-01694-0

He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021 Aug; 11(8):2362-2395. DOI: https://doi.org/10.1016/j.apsb.2021.03.019

Lawson S, Newport K, Pederniera N, Rownaghi AA, Rezaei F. Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS Appl Bio Mater. 2021 Apr 19; 4(4):3423-3432. DOI: https://doi.org/10.1021/acsabm.1c00009

Wang Z, Ma Y, Jiang Y, Zhou F, Wu Y, Jiang H, et al. Encapsulating quercetin in cyclodextrin metal-organic frameworks improved its solubility and bioavailability. J Sci Food Agric. 2022 Jul; 102(9):3887-3896. DOI: https://doi.org/10.1002/jsfa.11738

Chen X, Guo T, Zhang K, et al. Simultaneous improvement to solubility and bioavailability of active natural compound isosteviol using cyclodextrin metal-organic frameworks. Acta Pharm Sin B. 2021; 11(9):2914-2923. DOI: https://doi.org/10.1016/j.apsb.2021.04.018

He Y, Zhang W, Guo T, Zhang G, Qin W, Zhang L, et al. Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm Sin B. 2019 Jan; 9(1):97-106 DOI: https://doi.org/10.1016/j.apsb.2018.09.003

Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021; 3(20):5722-5744. DOI: https://doi.org/10.1039/D1NA00293G

Mahor A, Singh PP, Bharadwaj P, Sharma N, Yadav S, Rosenholm JM, Bansal KK. Carbon- Based Nanomaterials for Delivery of Biologicals and Therapeutics: A Cutting-Edge Technology. C. 2021; 7(1):19. DOI: https://doi.org/10.3390/c7010019

Gomez-Gualdrón DA, Burgos JC, Yu J, Balbuena PB. Carbon nanotubes: engineering biomedical applications. Prog Mol Biol Transl Sci. 2011; 104: 175-245. DOI: https://doi.org/10.1016/B978-0-12-416020-0.00005-X

Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011; 6(1):555. DOI: https://doi.org/10.1186/1556-276X-6-555

Chen K, Mitra S. Incorporation of functionalized carbon nanotubes into hydrophobic drug crystals for enhancing aqueous dissolution. Colloids Surf B Biointerfaces. 2019 Jan 1; 173: 386-391. DOI: https://doi.org/10.1016/j.colsurfb.2018.09.080

Zhu W, Huang H, Dong Y, Han C, Sui X, Jian B. Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp Ther Med. 2019 Jun; 17(6):4610-4616. DOI: https://doi.org/10.3892/etm.2019.7510

Vialpando M, Martens JA, Van den Mooter G. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs. Ther Deliv. 2011 Aug;2(8):1079-91. DOI: https://doi.org/10.4155/tde.11.66

Lainé AL, Price D, Davis J, Roberts D, Hudson R, Back, et al. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int J Pharm. 2016 Oct 15; 512(1):118-125. DOI: https://doi.org/10.1016/j.ijpharm.2016.08.034

Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: From physicochemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017 Sep 28; 262:329-347. DOI: https://doi.org/10.1016/j.jconrel.2017.07.047

Bremmell KE, Prestidge CA. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Dev Ind Pharm. 2019 Mar; 45(3):349-358. DOI: https://doi.org/10.1080/03639045.2018.1542709

Rengarajan GT. Stabilization of the amorphous state of pharmaceuticals in nanopores. J Mater Chem. 2008; 18(22):2537- 2539. DOI: https://doi.org/10.1039/b804266g

Sen KD, Patrignani G, Rosqvist E, Smått JH, Orłowska A, Mustafa R, et al. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. Eur J Pharm Sci. 2018 Sep 15; 122:152-159. DOI: https://doi.org/10.1016/j.ejps.2018.06.027

V. V. Jadhav. Formulation and Evaluation of Mesoporous Silica Nanoparticle Loaded Fast Dissolving Tablet of Tamoxifen. Indian J Pharm Sci. 2021;83(1): DOI: https://doi.org/10.36468/pharmaceutical-sciences.746

Ibrahim AH, Rosqvist E, Smått JH, Ibrahim HM, Ismael HR, Afouna MI, et al. Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. Int J Pharm. 2019 May 30; 563:217-227. DOI: https://doi.org/10.1016/j.ijpharm.2019.03.064

Ibrahim AH, Smått JH, Govardhanam NP, Ibrahim HM, Ismael HR, Afouna MI, et al. Formulation and optimization of drug-loaded mesoporous silica nanoparticle-based tablets to improve the dissolution rate of the poorly water-soluble drug silymarin. Eur J Pharm Sci. 2020 Jan 15; 142:105103 DOI: https://doi.org/10.1016/j.ejps.2019.105103

Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012 Mar 5; 9(3): 505-13. DOI: https://doi.org/10.1021/mp200287c

Bukara K, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. Eur J Pharm Biopharm. 2016 Nov; 108:220-225. DOI: https://doi.org/10.1016/j.ejpb.2016.08.020

Fagerholm U, Hellberg S, Spjuth O. Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology. Molecules. 2021 Apr 28; 26(9):2572. DOI: https://doi.org/10.3390/molecules26092572

Cabrera-Pérez MÁ, Pham-The H. Computational modeling of human oral bioavailability: what will be next? Expert Opin Drug Discov. 2018 Jun; 13(6):509-521 DOI: https://doi.org/10.1080/17460441.2018.1463988